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This paper is devoted to developing a multi-material numerical scheme for non-linear elas-
tic solids, with emphasis on the inclusion of interfacial boundary conditions. In particular
for colliding solid objects it is desirable to allow large deformations and relative slide,
whilst employing fixed grids and maintaining sharp interfaces. Existing schemes utilising
interface tracking methods such as volume-of-fluid typically introduce erroneous transport
of tangential momentum across material boundaries. Aside from combatting these difficul-
ties one can also make improvements in a numerical scheme for multiple compressible sol-
ids by utilising governing models that facilitate application of high-order shock capturing
methods developed for hydrodynamics. A numerical scheme that simultaneously allows
for sliding boundaries and utilises such high-order shock capturing methods has not yet
been demonstrated. A scheme is proposed here that directly addresses these challenges
by extending a ghost cell method for gas-dynamics to solid mechanics, by using a first-
order model for elastic materials in conservative form. Interface interactions are captured
using the solution of a multi-material Riemann problem which is derived in detail. Several
different boundary conditions are considered including solid/solid and solid/vacuum con-
tact problems. Interfaces are tracked using level-set functions. The underlying single mate-
rial numerical method includes a characteristic based Riemann solver and high-order
WENO reconstruction. Numerical solutions of example multi-material problems are pro-
vided in comparison to exact solutions for the one-dimensional augmented system, and
for a two-dimensional friction experiment.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

For modelling events such as high velocity impact and explosive loading of solid materials there is strong demand on the
numerical methods to simultaneously achieve high wave resolution, maintain sharp interfaces, and accurately impose inter-
facial boundary conditions. Furthermore, given the probability of finite deformations it is desirable to employ fixed grids. In
previous studies by the authors [2,3] a high-order shock capturing scheme was proposed for solid dynamics where Godu-
nov’s method was applied to an Eulerian model [7] in conservative form using fixed Cartesian grids. An important compo-
nent of these is the solution of the Riemann problem at cell edges, which is used to evaluate the respective numerical flux
functions. This is particularly advantageous from the viewpoint of resolving wave structures since material strength, an
important source of non-linearity, is accounted for in the Riemann problem solution. Other similar models include
[13,22,23], and numerical schemes include [14,18,28,30,31]. It is the purpose of this study to explore certain methods to
be used in conjunction with these schemes to enable the solution of systems comprising multiple components.
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The numerous numerical methods for solving multi-material problems using fixed grids can be broadly classed as either
interface capturing or interface tracking. The former has been applied extensively to problems in fluid mechanics where the
resultant interface smearing may be deemed acceptable on the basis that the flow is miscible. For many problems in solid
mechanics however interfaces need to remain sharp and interface tracking methods are more suitable. Included in this cat-
egory are level-set methods, volume-of-fluid (VOF) methods, and marker particle methods. A detailed presentation of the
means by which an interface is evolved in each of these shall be omitted, and instead the interested reader is directed to
the review in [24]. When interfaces of two solid materials come into contact two limits can be identified for the resulting
behaviour: stick where both the traction and velocity vectors of each material normal to the common interface are equal;
slip where tangential components of the traction normal to the interface are zero and the components slide freely over
one another. In reality, for high velocity impacts the behaviour will lie somewhere in between these two limits [32], with
the tangential motion a complex non-linear function of the interfacial state. An accurate numerical scheme for modelling
such processes must incorporate an interface tracking method where the boundary evolution reflects the motion dictated
by the physics. That is it allows unconstrained sliding between components. These requirements single out the level-set
and marker particle methods. VOF methods on the other hand require a common velocity vector between interacting com-
ponents within mixed cells. The next question then is how to incorporate these within a numerical scheme and more impor-
tantly how to account for the interaction between components.

The interest here is in an approach classed as a ghost fluid method (GFM), following the pioneering work in [5], as a
means of treating interface interactions. The method assumes that one can identify using for example level-set functions
those cells directly adjacent to and enclosing the interface. For each time iteration, the interface location is used to distin-
guish cells within each material’s domain and those that are not, the latter are termed ghost cells. The ghost cells are then
prescribed a state in such a way that when each material is advanced to the next time level using an independent single
component solver the presence and resulting behaviour of material interfaces and their interactions are then captured. In
[5] the ghost cell states are defined based upon the overlying state of the adjacent fluid and the boundary extrapolated en-
tropy. In [15] it was proposed that solutions to the resulting multi-material Riemann problem at interfaces could be used to
define the ghost cell states in what has become known as the modified ghost fluid method (MGFM). An immediate advantage
of the ghost cell approach in general is that no additional terms enter into the governing physical equations and for the most
part each material is treated independently. Furthermore the integral form of the governing equations need not be limited to
the time dependent domain for each material; thus one need only consider flux functions for cell boundaries as per a single
component solver. Ghost fluid type methods have been used in conjunction with an alternative formulation for solid mate-
rials in [29] for the study of impacting solids; in conjunction with a Lagrangian solid mechanics method in [6] to form a cou-
pled solid/fluid scheme; and for solid/fluid problems in [17] utilising the compressible Euler equations with equations of
state that enable simplified elastic–plastic response. Ghost fluid type methods have yet to be applied to any of the aforemen-
tion models for solid dynamics in conservative form.

The ghost fluid type methods are contrary to conservative methods such as in [19,9] where the integral form of the gov-
erning equations is solved for each material’s (time dependent) region. The resulting finite volume numerical scheme thus
requires reconstruction of the interface for calculation of cell apertures and volume fractions within mixed cells. Such meth-
ods have been successfully applied to the aforementioned models in conservative form, including in [19] where the VOF
method is used in a coupled solid/fluid scheme, and in [30,31] where marker particles are used to track boundaries in the
simulation of impacting solid materials. Although conservation is a desirable property it is recalled that only the level-set
or marker particle method would accommodate the requirements for sliding material interfaces. Between these, extension
of the level-set methods to multiple space dimensions is more straightforward, but are non-conservative by default. Using
level-set functions to track interfaces in a conservative scheme such as in [9] could lead to difficulties in solid dynamics prob-
lems on account of mass loss. To exemplify this point consider a geometry with corners which would be typical to many
problems in solid mechanics. Translating this through a grid using the level-set advection equation to evolve the boundaries
will result in mass loss in the corner regions where characteristics converge and the inherent regularisation deletes the unre-
solved information (see [4]). Whilst modifications of the necessary numerical algorithms have been proposed that success-
fully suppress these errors, they are not entirely eliminated. Thus one can expect an error in the change in volume fraction in
these regions across each time level. The result would be an erroneous computation of state variables potentially compro-
mising numerical stability. From these considerations it is thus justified that if one is to employ level-set functions then a
ghost fluid method should provide better stability.

The purpose of this paper is to extend the MGFM in [15] to the model of non-linear elasticity in conservative form from
[7]. Thus far the MGFM has been applied only to problems on fixed grids where the materials are all fluid [15] or where mate-
rials that are considered solid are governed by the compressible hydrodynamics equations with an equation of state that
allows simple elastoplastic response [17,34]. Application of the MGFM to models of solid mechanics in conservative form
(which can be considered comprehensive in the sense that they can allow for multi-dimensional deformations) on fixed grids
is yet to be achieved, and is justified on the basis of the following novel features:

� The ability to incorporate state-of-the-art shock capturing methods to a multi-material solid mechanics scheme: the use
of models for solid materials in conservative form allows the retrofitting of established high-order numerical methods
developed for hydrodynamic applications, which have proven to achieve superior wave resolution, to the field of solid
dynamics. These capabilities are somewhat new even for single material problems.
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� The sharp resolution of sliding interfaces on fixed grids: any artificial transport of tangential momentum between con-
tacting surfaces, which previous schemes based upon the VOF method suffer, would be eliminated. Furthermore, the
MGFM used in combination with level-set functions to track material boundaries allows a straightforward extension
to multi-dimensions.
� The accurate imposition of interfacial boundary conditions: analysis of the MGFM for gas-dynamics in [16] showed that

the imposition of boundary conditions is achieved to a higher degree of accuracy compared to the original GFM. Further-
more, in [15] it was demonstrated that although the GFM performs well for problems in fluid mechanics where waves
impacting on an interface are of moderate strength, the method becomes inadequate for large sudden jumps in
properties.

The rest of the paper proceeds as follows. In Section 2 the necessary theory is presented for non-linear elastic materials.
The numerical scheme for the model is detailed in Section 3, along with a summary of the employed single component meth-
ods and boundary evolution equation. Section 4 is devoted to a detailed derivation of the Riemann problem solution for mul-
ti-materials, with focus on the characteristic relations and the applicable boundary conditions. The numerical scheme is
demonstrated in Section 5 for selected initial value problems, for which exact solutions are available, using different inter-
facial boundary conditions and/or materials, and a two-dimensional friction experiment. Finally conclusions are drawn in
Section 6.
2. Model of non-linear elasticity

The model for non-linear elastic materials can be written [7,25]
@U
@t
þ @F

k

@xk
¼ �SC; ð1Þ
with
U ¼

qu
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where u = [ui] is the velocity vector; F = [Fij] is the tensor of deformation gradients; r = [rij] is the symmetric Cauchy stress
tensor; q = q0/detjFj is the density, with q0 a constant reference density in the unstressed state; E ¼ ðE þ juj2=2Þ is the total
energy; and ek are the Cartesian unit vectors. Summation is assumed over repeated indices. The specific internal energy E is
found from a hyperelastic equation of state in terms of the principal invariants I1 ¼ trðGÞ; I2 ¼ 1

2 ½ðtrðGÞÞ2 � trðG2Þ�;
I3 ¼ det jGj, of the Finger strain tensor G = F�TF�1; and entropy S:
EðI1; I2; I3; SÞ ¼
K0

2a2 ðI
a=2
3 � 1Þ2 þ cvT0I c=2

3 exp S=cv½ � � 1ð Þ þ B0

2
Ib=2

3 ðI
2
1=3� I2Þ; ð2Þ
where K0 ¼ c2
0 � ð4=3Þb2

0;B0 ¼ b2
0 are the squared bulk speed of sound and the squared speed of the shear wave respectively;

cv is the heat capacity at constant volume; and a,b,c are constants characterising the non-linear dependence of sound speeds
and temperature on the density. The stress tensor is found from
rij ¼ qFik
@E
@Fjk

: ð3Þ
The terms on the right-hand-side of the equations for F in Eq. (1) stem from the three compatibility constraints
r � ðqFÞ ¼ 0: ð4Þ
In fact Eq. (4) is deduced from six compatibility conditions for the inverse deformation gradient g = F�1 [2,7], since g can
be used to derive an alternative formulation governing the conservation of strain [7,22]. It is necessary that Eq. (4) be sat-
isfied for all time. It is mentioned that this is not necessarily true of numerical computations of the multi-dimensional
system Eq. (1) with SC = 0 as a result of truncation errors [18] and instead the terms in SC are treated as source terms
in the numerical computation. For the augmented one-dimensional system, upon which much of this study is focused,
Eq. (4) will hold for all time if satisfied initially. Thus for the one-dimensional case SC can be ignored in the discretisation
of Eq. (1).

Knowledge of the eigenvalues and eigenvectors of the system Eq. (1) reduced to quasi-linear form is essential for the
method used within the numerical scheme to compute the flux functions. A detailed derivation of the decomposition to
canonical form has been presented elsewhere [2,3] and thus, for clarity, details are left to the appendix.
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3. Modified ghost fluid method

3.1. Material interaction

Although the numerical methods employed for multiple interacting materials are applicable to any of the interface track-
ing techniques, for the reasons mentioned in Section 1, level-set functions are used. For a system comprising multiple mate-
rials, each component, denoted by a, is assumed to occupy the region Ca(t). In the course of the computation each region is
identifiable by defining a level-set function, /a(x, t), that at every point in space and time represents the signed Euclidean
distance from the interface. Thus the zero isocontour of /a marks the location of a material interface, oCa(t) = {x:/a(x)
= 0}, while a positive value distinguishes those regions occupied by the corresponding medium, and a negative value those
that are not. For each material then:
Fig. 1.
of the m
/a x; tð Þ
> 0; x 2 CaðtÞ
¼ 0; x 2 @CaðtÞ
< 0; x R CaðtÞ

8><>: :
In fact, one need only employ N � 1 level-set functions for a system of N materials.
For clarity the details of the modified ghost fluid method for interface interactions shall be presented initially for the spe-

cial case of one spatial dimension. It is assumed a computational mesh is employed where cell centred quantities are denoted
by the indices i and cell boundaries by i ± 1/2; thus each cell is denoted Ii = [xi�1/2,xi+1/2] and has the size (Dx)i = xi+1/2 � xi�1/2.
Space averages of the state variables, and values of the level-set functions at the current time level tn, are stored at cell cen-
tres. For an interface located between grid points i and i + 1 (Fig. 1(a)), identifiable by /i � /i+1 > 0, the material to the left of
the interface has the set of ghost cells fIiþ1; Iiþ2; . . . ; IiþNfþ1g where Nf denotes the number of fictitious points required by the
numerical stencil for the employed single component solver. The known states UL = U(xi, tn) and UR = U(xi+1, tn) at the current
time level for the left and right materials respectively can be used to pose a multi-material Riemann problem across the
interface with the initial condition:
Uðt ¼ 0; xÞ ¼ UL if x 6 x0;

UR if x > x0:

(
ð5Þ
with x0 an arbitrary point in space. The solutions eUL=R, found using the procedure to be explained in detail in Section 4, are
used to define the state of the respective material’s ghost cell immediately adjacent to the boundary (e.g. cell Ii+1 for the left
hand material in Fig. 1). In fact all other ghost cells are also taken to have the extrapolated predicted state. Thus, in general,
within every cell of the computational mesh the state of the real material at that point is stored along with the ghost state of
the neighbouring material.

An anomaly observed in gas-dynamics that can degrade the resolution of problems with interfaces is the so called ‘heat-
ing’ errors. These errors appear as deviations from the true solution in certain state variables, such as density and entropy, in
the vicinity of the interface. In [5] a simple and effective fix was proposed for this problem in conjunction with the original
ghost fluid method: for a material to the left of an interface located between cells Ii and Ii+1, the real cell Ii immediately adja-
cent to the boundary takes the value of entropy from the cell Ii�1. The fix applied to the right material follows by symmetry.
With the fix carried out prior to the interface interaction computation the value of entropy from cell Ii�1 is also prescribed to
the ghost cells since @S = 0 at the boundary. This concept is illustrated in Fig. 1(b). In the examples to follow the extent to
which the entropy fix suppresses heating errors shall be investigated for problems in solid mechanics.
Illustration of the modified ghost fluid method; (a) the prescription of ghost cell states for a material to the left of the interface using the solution eUL

ultimaterial Riemann problem; (b) the entropy fix.
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3.2. Numerical scheme for single components

Having defined the ghost cell states the governing equations for each material are solved independently for the next time
level. For each material a solution is sought only for real cells and the ghost cells immediately adjacent to boundaries. In two
space dimensions the governing transport equations Eq. (1) are solved using a fixed, structured computational grid consist-
ing of quadrilateral cells, denoted Ii,j, using the method presented in [3], where the indices i,j are used to denote cell centred
quantities. Each cell Ii,j has the dimensions Dx1i;j

¼ x1iþ1=2;j
� x1i�1=2;j

; Dx2i;j
¼ x2i;jþ1=2

� x2i;j�1=2
. Using the method-of-lines ap-

proach the discretised system for each material reads:
d
dt

Ua
i;jðtÞ ¼ �

F 1
iþ1=2;j � F 1

i�1=2;j;k

Dx1i;j

þ
F 2

i;jþ1=2 � F 2
i;j�1=2

Dx2i;j

( )
: ð6Þ
where Ua
i;j and F k;a are the cell averaged state and intercell numerical flux functions respectively for material a. To solve the

multi-dimensional problem Eq. (6) an unsplit dimension-by-dimension approach is used. For this, each numerical flux func-
tion is calculated via solution of a one-dimensional Riemann problem orientated normal to the respective boundary. Eval-
uation of the right-hand-side (RHS) of Eq. (6) therefore involves computing the solutions of four one-dimensional
Riemann problems: one across each cell boundary for each cell in the two-dimensional calculation. Only once all the numer-
ical fluxes are summed according to the RHS of Eq. (6) is the solution advanced in time. The temporal derivatives in Eq. (6)
are integrated using the 3rd-order TVD Runge–Kutta (RK) method from [26]. At the start of every time level, the timestep is
calculated from
Dt ¼ C �min
i;j

Dx1

max
a

k1ð Þ
;

Dx2

max
a

k2ð Þ

0@ 1A;

where maxa(kg) is the maximum wavespeed in the direction g for each material a, and 0 < C 6 1 is an adjustable scaler
parameter used to control the timestep so as to satisfy the Courant–Friedrichs–Lewy condition. It remains only to specify
the method used for computing the numerical flux functions.

Across each cell boundary the numerical flux functions are computed using approximate solutions to the local Riemann
problem found using the high-order characteristics based method presented in [2]. Briefly this method comprises computing
exact solutions of the system Eq. (1) reduced to quasi-linear form with linearised Jacobian. Considering for example the x1-
direction, the linearised Jacobian is evaluated at the intercell state cWi�1=2, where W is the vector of primitive variables [cf. Eq.
(A.2)], taken to be a simple arithmetic mean of the adjoining left and right cell centre states: cWi � 1=2 ¼ 1

2 ðWi þWi � 1Þ.
It is mentioned that, whilst the characteristic based approach for solving the local Riemann problems has been shown to

exhibit very good wave capturing capabilities and is adequate for the examples presented in this paper, linearised Riemann
solvers for non-linear elasticity are known to suffer some deficiencies. In [28], where the performance of a number of differ-
ent approximate Riemann solvers for the equations of non-linear elasticity was examined, the linearised solver was shown to
fail in the face of strong impacts, and produced entropy violating shock waves in cases of sonic rarefactions (although it is
pointed out that this latter condition is rare in solid media).

High-order spatial accuracy is achieved by reconstructing the cell averaged states projected onto the characteristic space
using the 5th-order weighted essentially non-oscillatory (WENO-5) method from [10] with monotonicity preserving con-
straints of [1] to provide the initial left and right states, UL/R. Although it is expected that the use of the fifth-order recon-
struction scheme will act to reduce ultimately observed errors in the solution, the actual order of accuracy of the scheme is
restricted to 3rd-order by the choice of temporal integration method. Evaluation of the benefits of using higher-order spatial
reconstruction, in terms of overall accuracy, will thus form part of the analysis in the examples section.

3.3. Interface evolution

The interface evolves according to the level-set convection equation
@/a

@t
þ ug

@/a

@xg
¼ 0: ð7Þ
As with the governing transport equations for the solid components, Eq. (7) is also solved using the method-of-lines; spatial
derivatives are discretised using the 5th-order central scheme presented in [21] and time integration is performed using the
same 3rd-order RK method as for the material equations.

In the computations of the boundary evolution equations the temporal updates using the RK method are performed har-
moniously with the material equations for each sub-stage. The reason being the interface interaction calculation is carried
out for each sub-stage for those cells that enclose the interface and from which the time-local interface velocity can be used
in Eq. (7) for a more accurate overall boundary advection. Away from the interface, where velocities for the corresponding
iso-contours are unknown, the interface velocity can be extrapolated to all cells using Eq. (9).

It is mentioned that level-set methods are by default non-conservative and spurious conservation errors can occur, in par-
ticular for multi-dimensional problems. For problems in solid mechanics, these errors can be expected to appear where the
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described geometry develops thin ligaments or has corners where characteristics converge (see for example [4] and the par-
ticle level-set method proposed therein as a means of reducing these errors). In the examples considered here, mass conser-
vation errors are suppressed using the above described high-order spatial discretisation methods in the evaluation of Eq. (7).

Another cause is that for multi-dimensional problems the boundary extrapolated velocity does not necessarily corre-
spond exactly to the velocities for each isocontour paramount to ensuring that / remains a signed-distance function, i.e.
the velocities which when used in Eq. (7) ensure that the updated level-set function at each point satisfies the Eikonal equa-
tion jr/j = 1. Reinitialisation algorithms (see for example [27,8]) are thus required incrementally to reinstate this property.
Reinitialisation of the level-set fields can be achieved by solving to steady state the following PDE:
@/
@s
þ Sð/Þðjr/j � 1Þ ¼ Fð/Þ; ð8Þ
where s is fictitious time and Sð/Þ; Fð/Þ are functions to be determined. In the original method of Sussman et al. [27] F ¼ 0
and S(/) = sign (/) in Eq. (8), however it is well known that this leads to spurious movement of the zero level-set isocontour,
and proves to be particularly problematic in the vicinity of corners. To avoid these artifacts, the recent method proposed by
Hartman et al. [8] is used where S(/) = sign (/) as in the original method, but F is formulated in such a way that the zero-
level isocontour remains anchored to the position prior to the advent of reinitialisation. Details of the function Fð/Þ are quite
lengthy and are thus not repeated here. Spatial derivatives in Eq. (8) are computed using the 5th-order WENO method pre-
sented in [11]. It is found that this method remains robust in the face of level-set fields of large curvatures and successfully
anchors the zero level-set to the original position.

3.4. Multi-dimensional implementation

The order of proceedings for the MGFM implemented in multi-dimensions does not depart from the one-dimensional
case, rather certain components of the method become slightly more involved. In the first instance, boundary cells can be
identified by checking for sign changes in the level-set functions as with the one-dimensional approach, only now this
check is performed in each coordinate direction. The main difficulty one faces in implementing the MGFM in multi-dimen-
sions is how to define the left and right states for the Riemann problem initial conditions Eq. (5). Whereas in one-dimen-
sion the interface lies normal to the Cartesian axis along which the solution is sought, and intersects some point between
two adjacent cell centres, in multi-dimensions it is quite likely that the interface may lie at some arbitrary angle to these
axis. Consider the case where a ghost cell state is sought for Solid 1 that is in contact with Solid 2. Ideally, when solving
the Riemann problem in a given ghost cell immediately adjacent to the boundary (from hereon named boundary ghost
cells) for Solid 1, one would like to have knowledge of the state extrapolated in a sensible way from the neighbouring real
cells (from hereon named boundary real cells). In order to facilitate this approach, any state quantity q of Solid 1 can be
extrapolated from the boundary real cells along the interface normal trajectory by solving to steady state the following
PDE [5]:
@q
@s
� nk

@q
@xk
¼ 0; ð9Þ
where s is fictitious time, the ± operator is used to define the direction of extrapolation, and n is the unit normal to the level-
set isocontour:
n ¼ r/
jr/j : ð10Þ
Thus, within the boundary ghost cells of Solid 1, one can obtain the extrapolated state of Solid 1, US1,EXT, and has the under-
lying real state of Solid 2, US2. To account for the arbitrary angle of the interface with respect to the Cartesian axis, the state
variables for both materials within the boundary ghost cells must be rotated onto the coordinate system defined by the
interface normal. This can be easily achieved by using the local interface normal computed from the level-set field (using
Eq. (10)) to define a rotation matrix RROT = RROT(n) (see [19]) and subsequently rotating the velocity and deformation tensor
as follows:
u
F
S

0B@
1CA

ROT

¼
RROTu

RROTFRROTT

S

0B@
1CA: ð11Þ
The initial conditions for the Riemann problem thus become: UL = (US1,EXT)ROT and UR = (US2)ROT. The subsequent compo-
nents of the method then follow the one-dimensional procedure. Once the solution has been computed one need only rotate
the resultant state back to the Cartesian coordinate system using the inverse of Eq. (11).

The implementation of the MGFM in multi-dimensions can be summarised as follows:

Step 1: Using the level-set field(s) at the current time level, all real cells and those cells that can be classified as ghost cells,
based upon the previously described criteria, are distinguished for computation.
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Step 2: For each material, the state of boundary real cells is extrapolated along the interface normal trajectory to all bound-
ary ghost cells. Also, if the entropy fix is being used this can be incorporated into the same extrapolation routine at
this stage.

Step 3: A multi-material Riemann problem is solved within all boundary ghost cells using the extrapolated states and, for
the case of solid/solid contact problems, the underlying real state of the adjacent material, rotated normal to the
interface. The solution (rotated back to the Cartesian coordinate system) is subsequently extrapolated to all other
ghost cells.

Step 4: One is then free to use the chosen numerical scheme for single component problems to update each material inde-
pendently to the next time level. In general this involves solving for each cell within the computational domain
regardless of whether it is a real cell or a ghost cell. In practice however one need only solve for those real cells
and a narrow band of boundary ghost cells surrounding the material.

Step 5: The level-set field(s) are then updated to the next time level using as the velocity vector at each point the extrap-
olated interface velocities determined from solution of the boundary Riemann problems. After the updated level-set
field (s) have been obtained, each is reinitialised to ensure compliance with the Eikonal condition.

Steps 1–5 are repeated for each time level in the computation.
4. Multi-material Riemann problems

The multi-material Riemann problem details depend on the materials on either side of the interface, which could be solid
or vacuum, and the orientation with respect to the interface of the material for which the solution is sought. Sample solu-
tions are depicted in Fig. 2. In what follows the multi-material Riemann problem is considered in one-dimension to be spec-
ified. Where appropriate, any corresponding state quantity shall be identifiable by superscript L or R, for left and right
materials respectively, assuming that these states are rotated normal to the interface (as per the previous section). Emphasis
shall be placed on the solution for the left hand material, but it is found that the solution for the converse differs only by sign
on certain terms and these shall be identified clearly.

For each solid material, the following thirteen invariant relations can be written:
Fig. 2.
contact
UL=R � LL=R � @WL=R ¼ 0: ð12Þ
Recall that the rows of LL/R are the left eigenvectors of the linearised Jacobian matrix Eq. (A.3) and correspond to the wav-
espeeds with canonical ordering in Eq. (A.5). For the left material of the multi-material Riemann problem one can utilise the
invariants corresponding to the three non-linear waves with speeds u1IþD and contact: Uj,4 6 j 6 13. Partial derivatives in
each of these relations can be replaced with differences according to
@WL=R 	 DWL=R � fWL=R �WL=R; ð13Þ
where fWL=R denotes the primitive state of the left hand material at the interface, and WL/R is the state at the current time
level just inside the boundary, which for an interface located between cells Ii and Ii+1 can be taken to be WL = W(Ui) and
WR = W(Ui+1). The linearised coefficients are also taken to be evaluated from these states for each respective material. Thus,
for each solid at the boundary one has ten relations for the thirteen unknowns; consideration of the boundary conditions is
required to yield the additional relations.

It is usual in solid mechanics problems to prescribe the interfacial boundary conditions in terms of restrictions on the
interface velocities eu, and/or the traction ~ren, where en is the normal to the interface. Note that en = eg for the one-dimen-
sional case in the g-direction, and more specifically for variables rotated using Eq. (11) (such that they are rotated onto the
x–t plots of example multi-material Riemann problem solutions for: (a) solid on left in contact with another solid on right and (b) solid on left in
with a vacuum.
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x1-direction) g = 1 can be taken. It will be seen that the number of boundary conditions must necessarily coincide with the
number of non-linear waves. From Eq. (3) and since E ¼ EðF; SÞ stress is a function of F and S. The traction at the boundary can
be approximated by a power series around the state (FL/R,SL/R) inside the boundary:
rgiðeFL=R; eSL=RÞ ¼ rgiðFL=R; SL=RÞ þ @rgi

@Fjk
ðFL=R; SL=RÞ eF L=R

jk � FL=R
jk

h i
þ @rgi

@S
ðFL=R; SL=RÞ eSL=R � SL=R

h i
þ � � � ð14Þ
Neglecting higher-order terms and using the definitions of the coefficients in Eqs. (A.4) and (14) can be rewritten as
~rL=R
gi ¼ rL=R

gi þ qL=R Ag1
ik
eF � F
� �

1k
þ Ag2

ik
eF � F
� �

2k
þ Ag3

ik
eF � F
� �

3k
þ Bg

i
eS � S
� �h iL=R

: ð15Þ
Thus combining Eq. (15) with the applicable invariants gives thirteen equations for sixteen unknowns:
bLL=R

~ueFTe1eFTe2eFTe3eS

0BBBBBB@

1CCCCCCA

L=R

�

u
FTe1

FTe2

FTe3

S

0BBBBBB@

1CCCCCCA

L=R26666664

37777775�
1

qL=R

0
0
0
0

ð~rL=R � rL=RÞeg

0BBBBBB@

1CCCCCCA ¼ 0; ð16Þ
where
bL ¼ l̂1; l̂2; l̂3; l̂4; l̂5; l̂6; l̂7; l̂8; l̂9; l̂10; l̂11; l̂12; l̂13

� �T
; ð17Þ
with
l̂1 ¼ ðDQ Þ11; ðDQ Þ12; ðDQ Þ13; nQ 1iA
g1
i1 ; nQ 1iA

g1
i2 ; nQ1iA

g1
i3 ; nQ 1iA

g2
i1 ; nQ1iA

g2
i2 ; nQ 1iA

g2
i3 ; nQ 1iA

g3
i1 ; nQ 1iA

g3
i2 ; nQ 1iA

g3
i3 ; nQ 1iB

g
i

� �
;

l̂2 ¼ ðDQ Þ21; ðDQ Þ22; ðDQ Þ23; nQ 2iA
g1
i1 ; nQ 2iA

g1
i2 ; nQ2iA

g1
i3 ; nQ 2iA

g2
i1 ; nQ2iA

g2
i2 ; nQ 2iA

g2
i3 ; nQ 2iA

g3
i1 ; nQ 2iA

g3
i2 ; nQ 2iA

g3
i3 ; nQ 2iB

g
i

� �
;

l̂3 ¼ ðDQ Þ31; ðDQ Þ32; ðDQ Þ33; nQ 3iA
g1
i1 ; nQ 3iA

g1
i2 ; nQ3iA

g1
i3 ; nQ 3iA

g2
i1 ; nQ3iA

g2
i2 ; nQ 3iA

g2
i3 ; nQ 3iA

g3
i1 ; nQ 3iA

g3
i2 ; nQ 3iA

g3
i3 ; nQ 3iB

g
i

� �
;

l̂4 ¼ l4; l̂5 ¼ l5; l̂6 ¼ l6; l̂7 ¼ l7;

l̂8 ¼ l8; l̂9 ¼ l9; l̂10 ¼ l10;

l̂11 ¼ ð0; 0;0;Ag1
11;A

g1
12;A

g1
13;A

g2
11;A

g2
12;A

g2
13;A

g3
11;A

g3
12;A

g3
13;B

g
1Þ;

l̂12 ¼ ð0; 0;0;Ag1
21;A

g1
22;A

g1
23;A

g2
21;A

g2
22;A

g2
23;A

g3
21;A

g3
22;A

g3
23;B

g
2Þ;
l̂13 ¼ ð0; 0;0;Ag1
31;A

g1
32;A

g1
i3 ;A

g2
31;A

g2
32;A

g2
33;A

g3
31;A

g3
32;A

g3
33;B

g
3Þ:
The parameter n = ±1 has been included in Eq. (17) to distinguish the direction of the non-linear waves: n = +1 if the material
is on the left, n = �1 if on the right. The inverse of Eq. (17) is
bR ¼ r̂1; r̂2; r̂3; r̂4; r̂5; r̂6; r̂7; r̂8; r̂9; r̂10; r̂11; r̂12; r̂13ð Þ; ð18Þ
where
r̂1 ¼ ððDQ Þ�1
11 ; ðDQ Þ�1

21 ; ðDQ Þ�1
31 ;0;0;0;0;0;0; 0;0; 0;0Þ

T
;

r̂2 ¼ ððDQ Þ�1
12 ; ðDQ Þ�1

22 ; ðDQ Þ�1
32 ;0;0;0;0;0;0; 0;0; 0;0Þ

T
;

r̂3 ¼ ððDQ Þ�1
13 ; ðDQ Þ�1

23 ; ðDQ Þ�1
33 ;0;0;0;0;0;0; 0;0; 0;0Þ

T
;

r̂4 ¼ r4; r̂5 ¼ r5; r̂6 ¼ r6; r̂7 ¼ r7;

r̂8 ¼ r8; r̂9 ¼ r9; r̂10 ¼ r10;
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r̂11 ¼ nðQ�1DQ Þ�1
11 ;nðQ

�1DQ Þ�1
21 ;nðQ

�1DQ Þ�1
31 ;Fg1X

�1
11 ;Fg2X

�1
11 ;Fg3X

�1
11 ;Fg1X

�1
21 ;Fg2X

�1
21 ;Fg3X

�1
21 ;Fg1X

�1
31 ;Fg2X

�1
31 ;Fg3X

�1
31 ;0

� �T
;

r̂12 ¼ nðQ�1DQ Þ�1
12 ;nðQ

�1DQ Þ�1
22 ;nðQ

�1DQ Þ�1
32 ;Fg1X

�1
12 ;Fg2X

�1
12 ;Fg3X

�1
12 ;Fg1X

�1
22 ;Fg2X

�1
22 ;Fg3X

�1
22 ;Fg1X

�1
32 ;Fg2X

�1
32 ;Fg3X

�1
32 ;0

� �T
;

r̂13 ¼ nðQ�1DQ Þ�1
13 ;nðQ

�1DQ Þ�1
23 ;nðQ

�1DQ Þ�1
33 ;Fg1X

�1
13 ;Fg2X

�1
13 ;Fg3X

�1
13 ;Fg1X

�1
23 ;Fg2X

�1
23 ;Fg3X

�1
23 ;Fg1X

�1
33 ;Fg2X

�1
33 ;Fg3X

�1
33 ;0

� �T
:

Thus Eq. (16) can be rewritten
fWL=R ¼WL=R þ 1
qL=R r̂11ð~rg1 � rg1Þ þ r̂12ð~rg2 � rg2Þ þ r̂13ð~rg3 � rg3Þ

� �L=R
: ð19Þ
It remains then to specify values of the traction at the boundary ~rL=Reg. It turns out that this depends entirely on the problem
and the boundary conditions one wishes to apply. There are a number of scenarios that can occur in solid mechanics,
depending on whether the solid is in contact with a vacuum or another solid. Selected idealised conditions shall be consid-
ered separately.

� Solid in contact with another solid: ‘stick’ conditions
The ‘stick’ boundary conditions for two solid materials in contact is an idealised condition where at the interface the trac-
tion and velocity vectors are equal:
~rLeg ¼ ~rReg; ~uL ¼ ~uR: ð20Þ
The solution at the boundary for each material is given by Eq. (19), with n differing in sign for each component depending on
the position in relation to the contact. The first three equations provide relations for ~uL=R in terms of the state UL/R (or coef-
ficients deduced from it) and ~rL=Reg for each component
~uL ¼ uL þ 1
q

Q�1D�1Q
� �L

~rL � rL� 	
eg; ð21aÞ

~uR ¼ uR � 1
q

Q�1D�1Q
� �R

~rR � rR� 	
eg: ð21bÞ
Substituting the conditions in Eq. (20) in Eq. (21) and rearranging gives
~rL=Reg ¼
1
qL Q�1D�1Q
� �L

þ 1
qR Q�1D�1Q
� �R


 ��1 1
qL Q�1D�1Q
� �L

rLeg þ
1
qR Q�1D�1Q
� �R

rReg þ n uR � uL� 	
 �
: ð22Þ
� Solid in contact with another solid: ‘slip’ conditions
Another idealised interfacial condition for two solids in contact is the ‘slip’ condition where the normal stress and normal
velocities are equal, whilst the tangential components of the traction vectors are zero. It is more convenient in terms of
notation for this example to consider the case of g = 1:
~rL
11 ¼ ~rR

11; ~rL
12 ¼ ~rL

13 ¼ ~rR
12 ¼ ~rR

13 ¼ 0; ~uL
1 ¼ ~uR

1 : ð23Þ
In the same way as with the ‘stick’ boundary conditions, one starts with Eq. (21) defined for both materials. In this case only
the expressions for ~uL

1 and ~uR
1 are required since the only unknowns are ~rL

11 and ~rR
11:
~uL
1 ¼ uL

1 þ
1
q

Q�1D�1Q
� �L

1i

~rL
1i � rL

1i

� 	
; ð24aÞ

~uR
1 ¼ uR

1 �
1
q

Q�1D�1Q
� �R

1i

~rR
1i � rR

1i

� 	
: ð24bÞ
Setting the tangential components of the traction to zero and rearranging Eq. (24) gives
~rL=R
11 ¼

1
qL Q�1D�1Q
� �L

11
þ 1

qR Q�1D�1Q
� �R

11


 ��1 1
qL Q�1D�1Q
� �L

1i
rL

1i þ
1
qR Q�1D�1Q
� �R

1i
rR

1i þ uR
1 � uL

1


 �
: ð25Þ
� Solid in contact with a vacuum
A solid in contact with a vacuum is the simplest of the scenarios. This case requires that the traction is zero. Thus the
boundary conditions are the required result:
~rL=Reg ¼ 0: ð26Þ

This completes the approximate solution of the Riemann problem for a solid in contact with either another solid or vacuum,
one need only insert the computed traction vector found from one of the above into Eq. (19) to give the solution at the
boundary, fWL=R.
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A final consideration is that the value of stress taken at the boundary is only a first-order approximation. Thus one
evaluation of Eq. (19) does not necessarily enforce, for example, ~rL=Reg ¼ 0 for the solid/vacuum case. It is simple to
evaluate Eq. (19) a small number of times to achieve the required result, for each iteration taking the value of WL/R in-
side the boundary to be the last known value of fWL=R. Experience shows that doing so has only a small influence on the
final result, but then makes little impact on the overall cost of the scheme since these solutions are sought in the small
number of boundary cells.

5. Examples

5.1. 1-d initial value problems

To assess the performance of the numerical methods, initial value problems are chosen that involve three-dimensional
deformations. Each case differs not only in perhaps initial conditions, but in the materials involved and the boundary con-
ditions that are applied at the interface. In respect to the latter, the one-dimensional tests are sufficient to asses the imple-
mentation of both stick and slip interfacial boundary conditions provided the problem is initialised to assume tangential
components of velocity and/or traction. All computations are performed in the x1-direction (g = 1).

To assess the performance of the numerical schemes for these problems, exact solutions have been found using the meth-
od proposed in [2]. The exact solution to a Riemann problem is uniquely determined from the (known) initial left and right
states, and (unknown) wavespeeds. The residual error, R, in continuity of, for example, the traction and velocities across the
central contact as determined from the Rankine–Hugonoit and required boundary conditions, gives a measure of the error in
the wavespeeds. The exact solution method follows an iterative procedure which given the initial left and right states seeks
the exact wave speeds so as to minimise R. The residuals are found by systematically evaluating the solution across each
wave to obtain the inner most states either side of the contact. These states then provide the required measures. An initial
guess of the wavespeeds, and of course wave types, is taken from an estimate of the inner states between waves using the
linearised solver. The exact wavespeeds are then found by solving the non-linear system RðS1; S2; . . . ; S6Þ ¼ 0 for Sj,1 6 j 6 6,
using the Newton–Raphson method. The way in which the solution is sought, by evaluating first the waves on the left side of
the contact, and then for the right, make it straightforward to solve systems where the left and right materials differ, or in the
case of solid/vacuum where material on one side does not exist.

5.1.1. Solid/solid ‘stick’ problem
In this first testcase both materials are considered to be copper with the parameters in the equation of state, Eq. (2), given

in Table 1. The initial left and right velocities, deformation gradients, and entropies are taken to be:
Table 1
Equatio

Para

q0

c0

cv

T0

b0

a
b
c

UL u ¼
2
0

0:1

0B@
1CA km s�1; F ¼

1 0 0
�0:01 0:95 0:02
�0:015 0 0:9

0B@
1CA; S ¼ 0 kJ g�1 K�1;

8><>:
UR u ¼

0
�0:03
�0:01

0B@
1CA km s�1; F ¼

1 0 0
0:015 0:95 0
�0:01 0 0:9

0B@
1CA; S ¼ 0 kJ g�1 K�1:

8><>:

These are the initial conditions used in [2], which were a modification of the testcase in [20]. The stick interfacial boundary
conditions are used. This configuration is equivalent to a single material problem and thus provides an opportunity to assess
the performance of the interface tracked scheme against a single material computation. A uniform grid is employed in the
range [0:1] cm with a grid spacing Dx = 1/500 cm. The interface is initially located at x0 = 0.5 cm. The CFL number C = 0.6 was
used. The solution comprises, in order from left to right, a left travelling longitudinal shock, transverse rarefaction, and trans-
verse shock; the right travelling wavetypes are symmetric to the left.

As is expected the single material method (SMM) resolves the contact wave across a finite number of grid points (Fig. 3).
Small errors are noticeable in the density and entropy, occurrences which are synonymous to the so called ‘heating’ errors
n of state parameters.

meter Value Units

Cu Al Steel

8.93 2.71 8.03 g cm�3

4.6 6.22 5.68 km s�1

3.9 � 10�4 9.0 � 10�4 5.0 � 10�4 kJ g�1 K�1

300 300 300 K
2.1 3.16 3.1 km s�1

1.0 1.0 0.596 –
3.0 3.577 2.437 –
2.0 2.088 1.563 –
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Fig. 3. Comparison of exact (solid line) and numerical (points) solutions for the solid/solid ‘stick’ testcase at the time t = 0.6 ls using the single material
method (SMM), C = 0.6, and Dx = 1/500 cm.
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observed in gas dynamics problems. The MGFM improves slightly on these errors (particularly observable in the entropy
profile) and, as expected, maintains a sharp jump in variables across the contact (Fig. 4). The heating errors are largely re-
duced by applying the entropy fix (Fig. 5), in particular the undershoot in density is rendered obsolete and the large over-
shoots observed in entropy are somewhat suppressed. The resolution of non-linear wave profiles differs very little between
each of the methods; the new multi-material method appears not to interfere with the performance of capturing non-linear
waves achieved using the single material method in terms of monotonicity and diffusivity. All demonstrate excellent agree-
ment of jump profiles and wavespeeds with the exact solution.

L1-errors and convergence orders of selected variables are tabulated in Table 2 for different grid sizes and variants of the
numerical method (here 1st-order refers to both space and time discretisation, and the 3rd-order WENO method is from [10]
and uses the 3rd-order TVD RK method for time integration). It is mentioned that orders of convergence are not expected to
exceed unity on account of the discontinuities present in the solution: for the L1 norm, in the limit of very fine grids the error
can converge no faster than Dx, hence, since solutions are always smeared over some finite number of grid points across
discontinuities, the order is not expected to exceed unity regardless of the actual accuracy of the scheme in regions of
smooth flow [33]. Nonetheless the error analysis provides a further means of justifying the high-order WENO-5 component
of the proposed scheme. It is seen that for the normal velocity, which undergoes only small jumps between the left and right
travelling longitudinal shocks, the orders differ little between each of the schemes. Although the WENO-5 method does
improve on the observed errors, one cannot say that these values would be vastly non-achievable using even the 1st-order
method with a refined mesh. However when the errors and orders of the tangential velocity u3 and deformation gradient F21

are considered, the benefits of the WENO-5 variant become much more apparent. For these variables, the orders are some-
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Fig. 4. Comparison of exact (solid line) and numerical (points) solutions for the solid/solid ‘stick’ testcase at the time t = 0.6 ls using the modified ghost
fluid method (MGFM), C = 0.6, and Dx = 1/500 cm.
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what higher and closer to unity, and the errors on the coarsest grid are lower than those for the 1st-order method using the
finest mesh and the WENO-3 method using the medium grid. Thus, despite being almost an order of magnitude slower than
the 1st-order method, the WENO-5 method is justified in terms of accuracy and cost when the resolution of the tangential
waves is deemed important.

A further examination of the errors and orders of convergence is useful to compare the performance of the scheme with
and without the entropy fix, and values are tabulated in Table 3. The observed visual impact of the entropy fix, in reducing
the heating errors, is reflected in the lower errors found for the coarse grid; in particular for the density which is largely ef-
fected. However, as the grid is refined it is seen that the entropy fix becomes ineffective. In fact, the solution on finer grids
without the fix yields smaller errors in comparison; the entropy fix appearing to marginally degrade the solution. Hence,
convergence orders are slightly higher in almost all variables without the entropy fix. The employed finer grids may, how-
ever, be an unreasonable density for solving problems in multi-dimensions given the complexity of the governing equations,
hence the entropy fix would prove to be a useful tool for more practical simulations.
5.2. Solid/solid ‘slip’ problem

In this example the left hand material is taken to be aluminium, whilst the right is copper. The necessary constants for
both materials are given in Table 1. The initial states for the aluminium and copper are taken to be the same as the left and
right states respectively for the solid/solid ‘stick’ problem. In this case however the slip boundary conditions were used in the
interface calculation. This testcase thus enables the performance of the scheme to be assessed in the face of dissimilar
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Fig. 5. Comparison of exact (solid line) and numerical (points) solutions for the solid/solid ‘stick’ testcase at the time t = 0.6 ls using the modified ghost
fluid method with entropy fix (MGFM-EF), C = 0.6, and Dx = 1/500 cm.

Table 2
L1 Errors and orders of convergence for the solid/solid ‘stick’ testcase: comparison of reconstruction schemes.

Scheme N u1 u3 F21

L1 Error L1 Order L1 Error L1 Order L1 Error L1 Order

1st Order 500 3.172 � 10�3 – 9.118 � 10�4 – 4.183 � 10�4 –
1000 1.621 � 10�3 0.969 6.440 � 10�4 0.502 2.937 � 10�4 0.510
2000 7.931 � 10�4 1.031 4.399 � 10�4 0.550 2.076 � 10�4 0.501

WENO3 500 3.019 � 10�3 – 4.296 � 10�4 – 1.795 � 10�4 –
1000 1.546 � 10�3 0.966 2.620 � 10�4 0.714 1.074 � 10�4 0.740
2000 7.672 � 10�4 1.010 1.467 � 10�4 0.837 6.365 � 10�5 0.756

WENO5 500 2.237 � 10�3 – 2.615 � 10�4 – 1.072 � 10�4 –
1000 1.139 � 10�3 0.974 1.537 � 10�4 0.766 5.946 � 10�5 0.851
2000 5.865 � 10�4 0.958 8.120 � 10�5 0.921 3.272 � 10�5 0.862
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immiscible materials separated by an interface across which the materials should be allowed to slide freely. A uniform grid
was employed in the range [0:1] cm with a grid spacing Dx = 1/500 cm. The interface is initially located at x0 = 0.5 cm. The
CFL number C = 0.6 was used. Under these conditions all six resultant non-linear waves in the solution are shocks: three left



Table 3
L1 Errors and orders of convergence for the solid/solid ‘stick’ testcase: comparison with (EF) and without (NEF) the entropy fix.

Scheme N q u3 F21

L1 Error L1 Order L1 Error L1 Order L1 Error L1 Order

NEF 500 4.024 � 10�3 – 2.615 � 10�4 – 1.072 � 10�4 –
1000 2.060 � 10�3 0.966 1.537 � 10�4 0.767 5.946 � 10�5 0.851
2000 1.038 � 10�4 0.989 8.120 � 10�5 0.921 3.272 � 10�5 0.862

EF 500 3.713 � 10�3 – 2.612 � 10�4 – 1.076 � 10�4 –
1000 1.967 � 10�3 0.916 1.547 � 10�4 0.756 5.957 � 10�5 0.853
2000 1.066 � 10�4 0.985 8.486 � 10�5 0.867 3.309 � 10�5 0.848
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travelling shocks in the aluminium and three right travelling in the copper. It is mentioned that the difference in material
properties means that the waves propagate faster within the aluminium. The contact wave separating the two components
moves to the right.

The space occupied by each of the materials is clear from the large change in density between each component across
the interface which exhibits no smearing as expected. The heating errors observed previously without the entropy fix
still manifest in the vicinity of the interface in the entropy profile (Fig. 6), although not as discernible in the density
profile as a result of the large difference in material properties. The entropy fix again proves effective in suppressing
these anomalies (Fig. 7), although not entirely eliminating the errors. Use of the fix again does not interfere with the
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resolving of non-linear waves; the waves being captured over a similar finite number of grid points. Contrary to the pre-
vious example, tangential components of velocity and stress undergo much larger jumps across the transverse waves in
the aluminium as a result of the different material properties and relief of traction at the interface. The high-order
scheme nonetheless proves effective in resolving these delicate features, albeit across a much larger number of cells
in comparison to the longitudinal waves.

An important feature desirable from the proposed scheme is the ability to accurately model compressible solids on
fixed grids with relative slide. In this example using the slip boundary condition this should certainly be the case. Con-
sidering again at the tangential velocity and stress profiles, it is observed that in comparison to the exact solution, the slip
boundary conditions are accurately enforced and excellent agreement is achieved in the discontinuous change across the
interface. Despite the interface having moved across a finite number of cells there is no apparent transfer of tangential
momentum, the materials slide freely over one another, and the tangential components of the traction go to zero across
the contact wave.
5.3. Solid/vacuum problem

This final one-dimensional example assumes only the left hand material is solid; the initial contact, located at x0 = 0.5 cm,
is a free-surface of the semi-infinite solid and the right hand region taken to be a vacuum. The solid material is aluminium
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with constants tabulated in Table 1. The initial conditions are taken from those of the left material of the previous solid/solid
testcases:
Fig. 8.
method
u ¼
2
0

0:1

0B@
1CA km s�1; F ¼

1 0 0
�0:01 0:95 0:02
�0:015 0 0:9

0B@
1CA; S ¼ 0 kJ g�1 K�1:
As in the previous examples a uniform grid was employed in the range [0:1] cm with a grid spacing Dx = 1/500 cm, and the
CFL number taken to be C = 0.6. The solution comprises a longitudinal rarefaction wave followed by two transverse shock
waves all propagating to the left of the initial contact. The initial state of the solid results in an acceleration of the free-sur-
face (contact) to the right.
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Comparison of exact (solid line) and numerical (points) solutions for the solid/vacuum testcase at the time t = 0.6 ls using the modified ghost fluid
(MGFM), C = 0.6, and Dx = 1/500 cm.
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It is expected in this case that the acceleration of the interface is accompanied by a relief of the traction of the free-sur-
face, which should see all components go to zero. As in the previous examples the numerical solutions are investigated with-
out (Fig. 8) and with (Fig. 9) the entropy fix. Both variations of the multi-material method are successful in achieving the zero
traction boundary condition and predicting accurate locations of the non-linear waves and free-surface. In this case the un-
bounded free-surface moves a considerable distance by comparison and it can be seen that this has no impact on the excel-
lent agreement of the numerically predicted final interface location in comparison to the exact. However, similar behaviour
as in the previous testcases are observed of heating errors in the vicinity of the contact surface. An undershoot in density and
prominent overshoot in entropy for the variant without the fix is found, the number of grid points affected by the heating
error in the entropy profile appears to exceed that seen previously. The addition of the entropy fix renders the density heat-
ing errors almost obsolete, but only mildly suppresses the entropy error. Despite these errors, the traction goes to zero and
overall profiles are in good agreement with the exact solutions.
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5.4. 2-d example

In the final example the scheme is demonstrated in two-dimensions by simulating the experimental setup from [12]
of a copper flyer plate impacting an aluminium cone encased within a steel shroud (Fig. 10). Although only non-linear
elastic solids are considered in the present study, and indeed in reality inelastic deformations will play a role, this test-
case provides an opportunity to assess the ability to allow for sliding in two-dimensions. Material properties for all com-
ponents are tabulated in Table 1. The problem is cylindrically symmetric, hence the governing laws are augmented by
the geometric source terms presented in [3]. Each material is identifiable by a dedicated level-set function, with the sur-
rounding space taken to be a vacuum. The use of multiple level-set fields within a void calls for the inclusion of some
form of collision criteria, such that the contact between each material is identifiable within each cell. Here the approach
proposed in [29] is used where contact between a Solid 1 and Solid 2 is assumed whenever the difference in level-set
fields between the two materials is less than 10% of the cell size: j/S1 + /S2j < 0.1Dx ? contact. The computational grid
covered the domain [0:3.6,0:4.28] cm, with uniform quadrilateral cells of size Dx = 1/50 cm. The CFL number was taken
to be C = 1/3. For the initial conditions all materials are assumed to be in a stress free configuration: F = I and S = 0. The
cone and steel casing were taken to be at rest, whilst the copper flyer plate was initialised with a non-zero velocity
component: u2 = 0.202 km s�1 for solutions sought in x1x2-domain. Solutions were computed for both the slip and stick
boundary conditions. For the former this experiment proves to be a rigorous test on account of the interface between
the aluminium cone and steel casing lying at an oblique angle to the Cartesian coordinate system; thus the experiment
provides analysis of the ability to allow for sliding in higher-dimensions.

The impact of the copper plate results in a shock wave propagating into the cone and case wave travels obliquely to
the interface (Fig. 11). Likewise a shock propagates into the flyer plate, which, upon reaching the upper free-surface,
results in a downwards moving elastic release wave. The fact that the waves propagate at an angle to the interface
between the cone and case means a discontinuous change occurs in the component of velocity tangential to the
boundary, and hence sliding between the two components, in the case of slip conditions. Upon reaching the bottom
free-surface of the cone in this case, the initial shock wave forces the cone to protrude from the confining case.
The stick boundary conditions on the other hand result in no sliding and thus the bottom free-surface of the cone
and case move simultaneously following the arrival of the first wave. The prominent influence of the chosen interfacial
boundary conditions is illustrated by the markedly different time-histories of free-surface velocity of the central cone
and casing (Fig. 12). Due to the difference in material properties, the waves travel faster in the aluminium cone than
the steel case. Thus, the initial shock reaches the free-surface of the cone some time before reaching the free-surface of
the case. For the slip boundary conditions the shock accelerates the free-surface of the cone which subsequently main-
tains a constant velocity until arrival of the release wave. For the stick conditions, the free-surface of the case is ini-
tially accelerated but quickly decelerates due to the binding to the (at that point in time) stationary case. Only once
the loading shock has reached the case free-surface does the cone begin again to accelerate further. Referring back to 1,
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Fig. 11. Contour plots of the pressure, p = �Tr (r)/3, at different indicated times for the friction experiment using (a)–(c) the slip boundary conditions, and
(d)–(f) the stick boundary conditions.

5536 P.T. Barton, D. Drikakis / Journal of Computational Physics 229 (2010) 5518–5540
in reality one would expect that the interfacial friction would dictate that the behaviour lie somewhere between these
two results. It is thus encouraging that the present method successfully realises both the bounding limits of interfacial
motion.
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6. Conclusions

The modified ghost fluid method originally applied to the equations of gas-dynamics has been extended to non-linear
elastic materials in multi-dimensions. The method boasts the use of fixed Cartesian grids and high-order shock capturing
methods whilst maintaining sharp interfaces and a simple means to employ existing single component solvers to capture
interface interactions. The required solution of multi-material Riemann problems has been derived for different interfacial
boundary conditions including a solid in contact with anther solid, and a solid in contact with a vacuum. The scheme is a
straightforward extension of an existing high-order single material method. Level-set functions are employed to allow
the possibility of relative sliding between solid components. Numerical solutions of various multi-material problems dem-
onstrates an accurate incorporation of each boundary condition. A particularly favourable achievement is the ability to allow
perfect sliding.

The focus of this paper has been non-linear elastic solids, but some remarks should be made about possible extension of
the scheme to include inelastic deformations and the effects of this additional physics. Inclusion of elastoplastic deforma-
tions, for example, will result in reduced stresses in some cases but perhaps larger deformations. In [3] it was shown that
the resulting inhomogeneous system can be solved using time operator splitting, thus requiring no change to the underlying
solution of the equations for non-linear elasticity. Since plastic deformations are volume preserving these have no influence
on the boundary evolution. Thus it should be possible to include inelastic deformations by means of modifications made only
to the underlying single material solver.
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Appendix A. Characteristic decomposition

In quasi-linear form the system Eq. (1) reduces to
@W
@t
þAg @W

@xg
¼ 0; ðA:1Þ
where
W ¼ u;FTe1;F
Te2; F

Te3; S
� �

ðA:2Þ
is the vector of primitive variables, and the Jacobian matrix is:
Ag ¼

ugI �Ag1 �Ag2 �Ag3 �Bg

�FTDg1 ugI 0 0 0

�FTDg2 0 ugI 0 0

�FTDg3 0 0 ugI 0
0 0 0 0 ug

0BBBBBBB@

1CCCCCCCA; ðA:3Þ
where Dij ¼ ei 
 eT
j are the unit Dyads, I the identity matrix, and the following coefficients were used:
Agk
ij ¼

1
q
@rgi

@Fkj
; Bg

i ¼
1
q
@rgi

@S
: ðA:4Þ
Considering only the g-direction, the matrix Eq. (A.3) has the following eigenvalues (in canonical order):
K ¼ diag ugI�D; ugI; ugI;ug;ugIþ pDp
� 	

; ðA:5Þ
where
p ¼
0 0 1
0 1 0
1 0 0

0B@
1CA;
and D2 is the diagonal matrix of eigenvalues of the symmetric positive definite acoustic tensor X = [Xij]:
Xij ¼ Agj
ik Fgk ¼ Q�1D2Q ; ðA:6Þ
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with Q an orthogonal matrix. Note that contrary to the employed notation the repeated g in Eq. (A.6) and in what follows
refers to the direction and not summation over repeated indices. The matrix of left eigenvectors is:
L ¼ l1; l2; l3; l4; l5; l6; l7; l8; l9; l10; l11; l12; l13ð ÞT; ðA:7Þ
where
l1 ¼ ðDQ Þ11; ðDQ Þ12; ðDQ Þ13;Q1iA
g1
i1 ;Q 1iA

g1
i2 ;Q 1iA

g1
i3 ;Q 1iA

g2
i1 ;Q 1iA

g2
i2 ;Q 1iA

g2
i3 ;Q 1iA

g3
i1 ;Q 1iA

g3
i2 ;Q 1iA

g3
i3 ;Q 1iB

g
i

� �
;

l2 ¼ ðDQ Þ21; ðDQ Þ22; ðDQ Þ23;Q2iA
g1
i1 ;Q 2iA

g1
i2 ;Q 2iA

g1
i3 ;Q 2iA

g2
i1 ;Q 2iA

g2
i2 ;Q 2iA

g2
i3 ;Q 2iA

g3
i1 ;Q 2iA

g3
i2 ;Q 2iA

g3
i3 ;Q 2iB

g
i

� �
;

l3 ¼ ðDQ Þ31; ðDQ Þ32; ðDQ Þ33;Q3iA
g1
i1 ;Q 3iA

g1
i2 ;Q 3iA

g1
i3 ;Q 3iA

g2
i1 ;Q 3iA
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i2 ;Q 3iA
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i3 ;Q 3iA
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i1 ;Q 3iA
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i2 ;Q 3iA

g3
i3 ;Q 3iB

g
i

� �
;

l4 ¼ ð0; 0;0; Fg2=Fg1;�1;0;0;0;0;0; 0;0; 0Þ;

l5 ¼ ð0; 0;0; Fg3=Fg1; 0;�1;0;0;0;0; 0;0; 0Þ;

l6 ¼ ð0; 0;0;0;0;0; Fg2=Fg1;�1;0;0; 0;0; 0Þ;

l7 ¼ ð0; 0;0;0;0;0; Fg3=Fg1;0;�1;0; 0;0; 0Þ;

l8 ¼ ð0; 0;0;0;0;0;0;0; 0; Fg2=Fg1;�1;0; 0Þ;

l9 ¼ ð0; 0;0;0;0;0;0;0; 0; Fg3=Fg1; 0;�1; 0Þ;

l10 ¼ ð0; 0;0; 0;0; 0;0; 0;0; 0;0;0;1Þ;

l11 ¼ ðDQ Þ31;ðDQ Þ32;ðDQ Þ33;�Q3iA
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i3 ;�Q 1iB

g
i

� �
:

and the matrix of right eigenvectors is:

R ¼ ðr1; r2; r3; r4; r5; r6; r7; r8; r9; r10; r11; r12; r13Þ; ðA:8Þ
where
r1 ¼
1
2
ðDQ Þ�1

11 ; ðDQ Þ�1
21 ; ðDQ Þ�1

31 ; Fg1ðD2Q Þ�1
11 ; Fg2ðD2Q Þ�1

11 ; Fg3ðD2Q Þ�1
11 ; Fg1ðD2Q Þ�1

21 ; Fg2ðD2Q Þ�1
21 ; Fg3ðD2Q Þ�1

21 ; Fg1

�
ðD2Q Þ�1

31 ; Fg2ðD2Q Þ�1
31 ; Fg3ðD2Q Þ�1

31 ;0
�T
;

r2 ¼
1
2
ðDQ Þ�1

12 ; ðDQ Þ�1
22 ; ðDQ Þ�1

32 ; Fg1ðD2Q Þ�1
12 ; Fg2ðD2Q Þ�1

12 ; Fg3ðD2Q Þ�1
12 ; Fg1ðD2Q Þ�1

22 ; Fg2ðD2Q Þ�1
22 ; Fg3ðD2Q Þ�1

22 ; Fg1

�
ðD2Q Þ�1

32 ; Fg2ðD2Q Þ�1
32 ; Fg3ðD2Q Þ�1

32 ;0
�T
;

r3 ¼
1
2
ðDQ Þ�1

13 ; ðDQ Þ�1
23 ; ðDQ Þ�1

33 ; Fg1ðD2Q Þ�1
13 ; Fg2ðD2Q Þ�1

13 ; Fg3ðD2Q Þ�1
13 ; Fg1ðD2Q Þ�1

23 ; Fg2ðD2Q Þ�1
23 ; Fg3ðD2Q Þ�1

23 ; Fg1

�
ðD2Q Þ�1

33 ; Fg2ðD2Q Þ�1
33 ; Fg3ðD2Q Þ�1

33 ;0
�T
;

r4 ¼ 0;0;0;Fg1X
�1
1i Ag1

i2 ;Fg2X
�1
1i Ag1

i2 �1;Fg3X
�1
1i Ag1

i2 ;Fg1X
�1
1i Ag1

i2 Fg2X
�1
1i Ag1

i2 ;Fg3X
�1
1i Ag1

i2 ;Fg1X
�1
3i Ag1

i2 ;Fg2X
�1
3i Ag1

i2 ;Fg3X
�1
3i Ag1

i2 ;0
� �T

;

r5 ¼ 0;0;0;Fg1X
�1
1i Ag1

i3 ;Fg2X
�1
1i Ag1

i3 ;Fg3X
�1
1i Ag1

i3 �1;Fg1X
�1
1i Ag1

i3 Fg2X
�1
1i Ag1

i3 ;Fg3X
�1
1i Ag1

i3 ;Fg1X
�1
3i Ag1

i3 ;Fg2X
�1
3i Ag1

i3 ;Fg3X
�1
3i Ag1

i3 ;0
� �T

;
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r6 ¼ 0;0;0;Fg1X
�1
1i Ag2

i2 ;Fg2X
�1
1i Ag2

i2 ;Fg3X
�1
1i Ag2

i2 ;Fg1X
�1
1i Ag2

i2 Fg2X
�1
1i Ag2

i2 �1;Fg3X
�1
1i Ag2

i2 ;Fg1X
�1
3i Ag2

i2 ;Fg2X
�1
3i Ag2

i2 ;Fg3X
�1
3i Ag2

i2 ;0
� �T

;

r7 ¼ 0;0;0;Fg1X
�1
1i Ag2

i3 ;Fg2X
�1
1i Ag2

i3 ;Fg3X
�1
1i Ag2

i3 ;Fg1X
�1
2i Ag2

i3 Fg2X
�1
2i Ag2

i3 ;Fg3X
�1
2i Ag2

i3 �1;Fg1X
�1
3i Ag2

i3 ;Fg2X
�1
3i Ag2

i3 ;Fg3X
�1
3i Ag2

i3 ;0
� �T

;

r8 ¼ 0;0;0;Fg1X
�1
1i Ag3

i2 ;Fg2X
�1
1i Ag3

i2 ;Fg3X
�1
1i Ag3

i2 ;Fg1X
�1
2i Ag3

i2 Fg2X
�1
2i Ag3

i2 ;Fg3X
�1
2i Ag3

i2 ;Fg1X
�1
3i Ag3

i2 ;Fg2X
�1
3i Ag3

i2 �1;Fg3X
�1
3i Ag3

i2 ;0
� �T

;

r9 ¼ 0;0;0;Fg1X
�1
1i Ag3

i3 ;Fg2X
�1
1i Ag3

i3 ;Fg3X
�1
1i Ag3

i3 ;Fg1X
�1
2i Ag3

i3 Fg2X
�1
2i Ag3

i3 ;Fg3X
�1
2i Ag3

i3 ;Fg1X
�1
3i Ag3

i3 ;Fg2X
�1
3i Ag3

i3 ;Fg3X
�1
3i Ag3

i3 �1;0
� �T

;

r10 ¼ 0;0;0;�Fg1X
�1
1i Bg

i ;�Fg2X
�1
1i Bg

i ;�Fg3X
�1
1i Bg

i ;�Fg1X
�1
2i Bg

i � Fg2X
�1
2i Bg

i ;�Fg3X
�1
2i Bg

i ;�Fg1X
�1
3i Bg

i ;�Fg2X
�1
3i Bg

i ;�Fg3X
�1
3i Bg

i ;1
� �T

;

r11 ¼
1
2
ðDQ Þ�1

13 ; ðDQ Þ�1
23 ; ðDQ Þ�1

33 ;�Fg1ðD2Q Þ�1
13 ;�Fg2ðD2Q Þ�1

13 ;�Fg3ðD2Q Þ�1
13 ;�Fg1ðD2Q Þ�1

23 ;�Fg2ðD2Q Þ�1
23 ;�Fg3ðD2Q Þ�1

23 ;
�

�Fg1ðD2Q Þ�1
33 ;�Fg2ðD2Q Þ�1

33 ;�Fg3ðD2Q Þ�1
33 ; 0

�T
;

r12 ¼
1
2
ðDQ Þ�1

12 ; ðDQ Þ�1
22 ; ðDQ Þ�1

32 ;�Fg1ðD2Q Þ�1
12 ;�Fg2ðD2Q Þ�1

12 ;�Fg3ðD2Q Þ�1
12 ;�Fg1ðD2Q Þ�1

22 ;�Fg2ðD2Q Þ�1
22 ;�Fg3ðD2Q Þ�1

22 ;
�

�Fg1ðD2Q Þ�1
32 ;�Fg2ðD2Q Þ�1

32 ;�Fg3ðD2Q Þ�1
32 ; 0

�T
;

r13 ¼
1
2
ðDQ Þ�1

11 ; ðDQ Þ�1
21 ; ðDQ Þ�1

31 ;�Fg1ðD2Q Þ�1
11 ;�Fg2ðD2Q Þ�1

11 ;�Fg3ðD2Q Þ�1
11 ;�Fg1ðD2Q Þ�1

21 ;�Fg2ðD2Q Þ�1
21 ;�Fg3ðD2Q Þ�1

21 ;
�

�Fg1ðD2Q Þ�1
31 ;�Fg2ðD2Q Þ�1

31 ;�Fg3ðD2Q Þ�1
31 ; 0

�T
:
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